PHYSICAL REVIEW E 78, 056302 (2008)

Flow properties of immiscible blends: Doi-Ohta model with active advection
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The interface between two immiscible fluids both is influenced (advected) by the imposed flow and influ-
ences (perturbs) it. The perturbation then changes the advection. This phenomenon is taken into account in an
extended Doi-Ohta model of rheological behavior of immiscible blends. The agreement of the rheological

predictions with experimental data is improved.
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I. INTRODUCTION

The macroscopic flow behavior of immiscible blends can-
not be described with only classical hydrodynamic fields
serving as state variables. This is because the immiscible
blends contain an interface that evolves in time on a time
scale comparable with the time scale on which the hydrody-
namic fields evolve. In order to model flows of immiscible
blends we have to therefore, first, choose a way to describe
states of the interface (we shall call it an interface morphol-
ogy) and, second, find equations governing the time evolu-
tion of the morphology and the hydrodynamic fields.

As for the the mathematical characterization of the mor-
phology, we follow in this paper Doi and Ohta [1]. Immis-
cible blends are assumed to be isothermal, incompressible,
and spatially homogeneous. The interface is seen as being
uniformly distributed throughout the fluid. Its states are char-
acterized by one tensor ¢ and one scalar Q. The latter is the
surface area per unit volume and the former is a symmetric
traceless tensor characterizing the orientation of the inter-
face. Other important characteristics of the morphology, as
for example the curvature and, more generally, the global
shape of the interface, are out of the reach of the Doi-Ohta
description. Consequently, the strong points of the Doi-Ohta
theory are mathematical simplicity, and rheological (rather
than morphological) predictions. Below, we shall extend the
Doi-Ohta model in order to be able to account for the flow
perturbations caused by the presence of the interface. The
extension will not, however, provide a more detailed descrip-
tion of the morphology.

For the imposed overall flow the interface is an obstacle
that moves and deforms in response to the forces generated
in the fluid-interface interactions and also modifies the flow
in its neighborhood. If all the details of (i) the shape of the
interface, (ii) interface-fluid interactions (boundary condi-
tions), and (iii) rheological properties of both fluids involved
are known, then both the modification of the flow and the
modification of the advection can be obtained as a solution to
the corresponding Stokes problem. Due to the lack of knowl-
edge of all three points (i)—(iii) mentioned above as well as
the enormous mathematical (numerical) complexity involved
in the process of solving the Stokes problem, we cannot take
this microhydrodynamic path. We only recall that the micro-
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hydrodynamics investigation implies that the flow in the vi-
cinity of the interface remains unperturbed (and thus the in-
terface follows passively the flow—a passive advection) only
if both fluids in the mixture are identical and the interface is
completely structureless and does not interact with the bulk
fluid. Otherwise, the flow of the fluid surrounding the inter-
face is always perturbed and the advection of the interface is
never passive (we shall call it an active advection). Even if
the mechanical properties of the interface as well as the bulk
fluid-interface interactions are ignored, just the “rheological
inhomogeneity” (i.e., the appearance of regions with differ-
ent viscosities) is sufficient to create flow perturbations and
thus a nonpassive (active) advection.

Doi and Ohta assumed in [1] that the interface is advected
passively (i.e., its presence does not perturb the the flow
around it). A mesoscopic investigation of the advection that
takes into account the active role of the interface in its ad-
vection but does not enter into all details needed in the com-
plete microhydrodynamic analysis has been introduced in
[2]. Our goal in this paper is to replace the passive advection
in the Doi-Ohta model by the active advection introduced in
a general form in [2].

The paper is organized as follows. In Sec. II we recall the
concept of mesoscopic active advection and the Doi-Ohta
model. The governing equations of the Doi-Ohta model with
active advection are developed in Sec. III. Predictions of the
extended model are compared with predictions of other mod-
els and with some published experimental data in Sec. IV.

II. ACTIVE ADVECTION

States of isothermal, incompressible, and homogeneous
immiscible blends are described in the Doi-Ohta theory by
the field of the overall momentum u(r) and by the interface
morphology characterized by ¢ and Q; r denotes the position
vector, ¢ is a symmetric traceless tensor characterizing the
orientation of the interface, and Q is the surface area per unit
volume. In order to be able to deal with the active role that
the interface plays in the advection, we introduced another
tensor w that is closely related to the gradient of the per-
turbed velocity.

The governing equations of the extended Doi-Ohta theory
[a coupled set of equations governing the time evolution of
(u,q,Q,w)] will be constructed in this paper by filling the
thermodynamic framework [the general equation for the non-
equilibrium reversible-irreversible coupling (GENERIC)]
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with the mesoscopic version of the physics involved in the
microhydrodynamic formulation of the Stokes problem. The
framework itself guarantees the compatibility of the time
evolution with mechanics in the inviscid limit and the com-
patibility with thermodynamics of externally unforced fluids.
The process of filling the framework is called GENERIC
constitutive relations, just as the process of filling the frame-
work of local balance laws (representing the general frame-
work for governing equations of classical hydrodynamics) is
called the constitutive relations. In order to prepare the con-
struction of the governing equations of the extended theory
we shall recall the GENERIC framework [3-10] (in Sec.
IT A), generic formulation of the active advection developed
in [2] (Sec. II B), and the GENERIC formulation of the Doi-
Ohta theory [11,12] (Sec. I C).

A. Thermodynamic (GENERIC) framework

The abstract framework for the governing equations of
classical hydrodynamics (the balance laws) arises from re-
quiring mass, momentum, and energy conservation. The fill-
ing of the framework, i.e., the specification of the fluxes
introduced in the balance laws) is called a constitutive rela-
tion. In addition to mass, momentum, and energy conserva-
tion, solutions to the hydrodynamic equations are also re-
quired to agree with the experimental observations
constituting the basis of equilibrium thermodynamics (a fluid
that is left undisturbed reaches a state at which its behavior is
found to be well described by equilibrium thermodynamics).
Consequences of this requirement are explored in nonequi-
librium thermodynamics. Still another general aspect of hy-
drodynamics is its mechanical origin. The balance of mo-
mentum has also an alternative interpretation as a continuum
version of Newton’s law. This mechanical aspect is used in
classical hydrodynamics only in providing part of the mo-
mentum flux with the physical interpretation of the force
acting on a surface. A general framework for the mesoscopic
time evolution based on the requirements of the conservation
of mass, momentum, and energy, and with equal importance
also for the requirement of compatibility with thermodynam-
ics and mechanics is called GENERIC. Its main advantage is
its applicability for complex fluids, whose states have to be
characterized not only by the classical hydrodynamic fields
but also with extra fields characterizing the internal structure.
If compared with classical hydrodynamics, the GENERIC
viewpoint is particularly new and powerful in requiring com-
patibility with mechanics. Newton’s law enters the analysis
not only in providing an alternative physical interpretation to
the balance of momentum but also in the discussion of the
time evolution of the internal structure. Below, we shall re-
call the GENERIC framework in the special context of iso-
thermal fluids.

Let x denote the state variables. If we limit ourselves to
isothermal and incompressible fluids then the time evolution
of x, compatible with thermodynamics and mechanics, is
governed by [3-10]

]

i=LP — —, 1
x s (1)

called in [7,8] GENERIC. By x we denote the time deriva-
tive of x. The first term on the right-hand side of (1) ex-
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presses compatibility with mechanics, the second the com-
patibility with thermodynamics. The symbols appearing in
(1) have the following meanings.

Free energy. ®(x), a real-valued function of x, has the
physical meaning of the total free energy. By @, we denote
the derivative of @ with respect to x.

Kinematics. The operator L, hereafter called a Poisson
bivector, transforms a covector (a gradient of a potential)
into a vector. From the physical point of view, L expresses
kinematics of the state variables x. In the particular case of
classical mechanics of particles [the state variables in this
case are x=(p,q), where ¢ are position vectors and p the
momenta of the particles], L=( ;). This is the Poisson bi-
vector transforming in classical mechanics the gradient of
energy E(g,p) into a vector field. In the general setting, L is
required to satisfy the following properties: {A,B}
=(A,,LB,) is a Poisson bracket, i.e., {A,B}=—{B,A}, and sat-
isfies the Jacobi identity {A,{B,C}}+{B.{C,A}}
+{C.{A,B}}=0; A,B,C are sufficiently regular real-valued
functions of x; (,) denotes the inner product. The Poisson
bracket corresponding to L=(_0] 10) is thus {A,B}=A B,
—BA,. _

Dissipation. E(®,), called a dissipation potential, is a suf-
ficiently regular real-valued function of @, satisfying the fol-
lowing properties:

E reaches its minimum at 0,
E is convex in a neighborhood of 0. (2)

Properties of solutions of (1)

The properties required from L, = appearing in (1) imply

that solutions to (1) satisfy the following inequality:

do

— <

P 0. (3)
The free energy ® can thus only remain unchanged or de-
crease during the time evolution. To see that (3) indeed
holds, we note that d®/dt=(® LD )—(D , Jd=/dD,)<0.
The last inequality follows from (®,,L® )=0 and from the
properties required from the dissipation potential =. The in-
equality (3) together with the thermodynamic stability re-
quirement (i.e., ® is a convex function of x) allows us to
consider @ as a Lyapunov function. This then means that
solutions to (1) tend, as — oo, to states that minimize the free
energy (i.e., the states, called equilibrium states, that are so-
lutions of ®@,=0). Since the first term on the right-hand side
of (1) leaves @ unchanged, we shall also write (1) as

d d J
N
at at nondiss at diss

0.
(—’“) = Lo, (5)
% nondiss

where

and
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ox =
— =——. 6
) 0

The framework (1) is filled by specifying the state vari-
ables x, the potentials ®, =Z, and the operator L(x). A speci-
fication of x,®,=,L is called a GENERIC constitutive rela-
tion. Below, we shall recall two examples (in Secs. II B and

I C) and in Sec. IIT we shall develop a third one as the main
result of this paper.

B. GENERIC formulation of active advection

In this section we shall gradually develop the time evolu-
tion equations introduced in [2].

1. One-component complex fluid

We begin with a one-component incompressible and iso-
thermal complex fluid whose internal structure (morphology)
is chosen to be characterized by a conformation tensor ¢ (a
3 X3 symmetric and positive definite matrix). We assume
that the complex fluid is homogeneous and thus we consider
¢ to be independent of r. Depending on what type of com-
plex fluid and internal structure we consider, the conforma-
tion tensor ¢ can have many different physical interpreta-
tions. Typically, it is seen as a deformation tensor of the
internal structure. In Sec. II C we shall interpret it in the
context of the Doi-Ohta characterization of the interface.

We proceed to specify the GENERIC constitutive rela-
tions.

State variables. The state variable x in this section is thus

x=(u(r),c), (7)

where u(r) is the field of the overall momentum and ¢ is the
conformation tensor.

Kinematics. Next, we need the Poisson bracket expressing
kinematics of (7) (see [13—15] and Sec. IIT A):

{A’B}(M,C) = f dr ul[aj(Aul)Buj - &](BMI)AM/]
+ f drcy(A,, 9B, —B. JA, )

+ f dr ckm(AC]makBu, - BclmakAul) . (8)

In the above two equations we use the following notation:
i,j=1,2,3; d,=0/dr;; repeated indices mean summation; A
and B are sufficiently regular real-valued functionals of
(u(r),c); A= OA/ Su;(r); 6/ 8 denotes the Volterra functional
derivative.

The equations (x)ongiss=L®P, corresponding to the bracket
(8) are

17
(_u) =V(uv) - Vp- Vo,
at nondiss

d
(_c) =c-Vo+Vov' ¢, 9)
dt nondiss

where
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o =_20,. ¢, (10)

p is the hydrostatic pressure, v=®, and the superscript T’
denotes the transpose. The time derivative in the second
equation in (9) is the ordinary derivative (not the partial de-
rivative as in the first equation) since ¢ is, according to our
assumption, independent of r.

Dissipation. We recall that ®,=0 at equilibrium. The ther-
modynamic force driving the internal structure to its equilib-
rium is thus X=®,. If we limit ourselves to states for which
(®,)k, k=3, can be neglected, we choose

—_
- —
— =

Atr(X -¢ - X), (11)

N | =

where A >0 is a phenomenological coefficient. The equation
() giis=—0E / 6P, becomes thus

%)
- =0,
at diss

<d_c) =—lA(c'<I>c+CI>c~c). (12)
dt diss

The individual nature of the complex fluid under consid-
eration is expressed in the free energy ® and the dissipation
potential Z. In this paper the complex fluid under investiga-
tion is an immiscible blend. We shall discuss @ and = in
Sec. III after completing the presentation of the advection.

2. Active advection

As we have already explained in the Introduction, the
advection is formulated in the context of microhydrodynam-
ics as the Stokes problem. The existence of a nontrivial so-
lution to the Stokes problem implies that the advection is not
passive (i.e., it is active in our terminology). How can we
discuss active advection on a mesoscopic level on which we
cannot formulate the Stokes problem? We shall follow here
the approach developed in [2]. In this section we shall recall
the mathematical formulation. The physics behind it is dis-
cussed in Sec. III A.

In order to be able to account for changes in the imposed
flow caused by the flow-interface interaction, we introduce a
new state variable w that is a 3 X 3 tensor whose relation to
the perturbed flow will become clear later [see Eq. (14) and
also Sec. III A] when its role in the time evolution is re-
vealed.

State variables

x=(u(r),c,w). (13)

The kinematics of the conformation tensor ¢ is assumed to be
given by the bracket (8). Otherwise, its physical interpreta-
tion is left unspecified.

Kinematics. The Poisson bracket expressing the kinemat-
ics of (13) is derived in [2]. The equations resulting from it
governing the nondissipative time evolution of (¢,w) are the
following:

d
(—c) —c- (Vo+ @)+ (Vo' +®,) ¢,
dt nondiss
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d
(7‘:) =w-(Vo+®L) = (Vo+®L) - w-2d, ¢,
nondiss

a_(nd)=_2(1)c,c_q)£.w+w-q)£, (14)

By comparing (9) with the first equation of (14), we see that
®,, has indeed the physical meaning of the extra velocity
gradient emerging due to the flow-interface interaction.

The above formulation of the active advection has been
applied so far only for one specific physical interpretation of
c: the ellipsoid ric;;rj=1; r=(ry,ry,r;) € R® represents a
droplet [2,16]. Below, we shall apply it to the Doi-Ohta char-
acterization of the interface morphology.

C. GENERIC formulation of the Doi-Ohta model

The Doi-Ohta model developed in [1] has been put into
the form (1) in [11,12]. We shall recall it here.

State variables. The state variables in the Doi-Ohta theory
are

x=(u(r).q.0). (15)

Kinematics. Doi and Ohta derived in [1] the equations
representing the passive advection of (Q,q) from kinetic
theory. It was shown then in [11] that these equations can be
cast into the form (5) with the Poisson bracket (8) trans-
formed into state variables (u,q,Q) by the following trans-
formation:

trg=0. (16)

The inverse of the relation between b and (g, Q) given in the
second and third equations in (16) is

b

=5

0=(trb)". (17)

The transformation ¢+« (g,Q) introduced in (16) is one to
one so that the Poisson bracket (8) expressing kinematics of
(u,c¢) transforms into a Poisson bracket expressing kinemat-
ics of (u,q,Q) (see more in [11]).

Free energy and dissipation. Doi and Ohta did not intro-
duce the free energy in [1]. By casting their equations into
the form (1), the free energy that they in fact used was iden-
tified in [11,12]. In the next section we shall combine the
Doi-Ohta model with the model of active advection recalled
in Sec. II B 2. The free energy, the equations governing the
nondissipative time evolution, as well as the dissipative po-
tential and the dissipative time evolution implied by it devel-
oped there will reduce to the corresponding quantities in the
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Doi-Ohta theory by simply omitting the extra variable w. We
do not have to therefore write down here explicitly the
GENERIC form of the governing equations of the original
Doi-Ohta theory and we can proceed directly to the extended
model.

II1. DOI-OHTA MODEL WITH ACTIVE ADVECTION

The Doi-Ohta model is extended by taking into account
the active role that the interface and the “rheological inho-
mogeneity” play in the flow-interface interaction. To formu-
late the extended model, we combine the state variables (15)
of the original Doi-Ohta theory and the state variables used
in the active advection model (13). We thus use in this sec-
tion the following set of state variables:

x=(u(r).q.0.w). (18)

Kinematics. By applying the transformation (16) on the
Poisson brackets expressing the kinematics of the Doi-Ohta
model [11] [i.e., the bracket (8) transformed into the state
variables (#,Q,q) by (16)] and the active advection model
[2] we arrive at the Poisson bracket expressing the kinemat-
ics of (18). The equations corresponding to it governing the
nondissipative time evolution of (18) are the following:

db
<E> =—b- (VO +D,) - (VD,+ D)) b,
nondiss

d
(d_‘:> :w.(V<I>,,+<I>£)—(V<I>u+q>£).w+2b.¢)b’
nondiss

™ =2p. Dy - DT . w+w D (19)
and finally {we use the free energy (21); note that

dy=T - (Tﬁq/Q2)tr(q -q)+ (a/2)tr[wT~ w- (q + %Q&)],
O, =(2IB/0)q + (aQ/2)w" - w,
and
b, ,=aw-b

d_Q) — tea- VD) - el w
(a’t nondiss— tr(q - Vo') Qtr(b w-b),

U) (22 25){wig- ¥+ Cutow-)
<dt>n0ndiss_<Q+35 (g VUT>+Qtr(b w-b)

—é[b~(VvT+aw~b)+(Vv+ab~w7)-b],

d
(_w) =w-(Vo+ab-wh)=(Vo+ab-wh) -w
dt nondiss

b tr(q - q)
+ §|:(F - 3F,8q Q2

+ab-wl-w,

)5+ 4F,8qé}

056302-4



FLOW PROPERTIES OF IMMISCIBLE BLENDS: DOI-...

. tr(g - q) q
o = Q{(r 3B, 7 5+4rﬁq§ +aw-b-w'
(20)
(where v=®,=u/p).
Free energy
o= q)(kin) + q)(interface) + q)(shape)’ (21)
. uw o«
<I)(k"‘)=fdr —+—trw’-b-w) ]|, (22)
2p 2
(D(mterface fdr FQ (23)
rgtr(q -
q)(shape) — f dr—ﬂqy. (24)

The physical meaning of the four terms and the three mate-
rial parameters (a,I',,) introduced in (21) will be dis-
cussed in Secs. IIT A and III B.

Dissipation potential. The thermodynamic forces that
drive the immiscible blend to equilibrium are the following:

1) _
x = (I)Q,
XV=a,
X% =o,,
X¥=p, (25)

where D:%(Vv +Vol).

From these thermodynamic forces we now construct a
dissipation potential satisfying the general properties (2). If
we restrict ourselves to states at which the thermodynamic
forces (25) are not too large, it suffices to consider the fol-
lowing quadratic potential:

iy 2

1
E= f drE[A“)(X“)) + APXPxP + (x, x1)

(3) 4) (3)
[P A ) (K (26)
AD o5\ x@
ik To9%jk ik
where AV>0, A®>0, and (A4,A(4))>O are dissipative

phenomenological coefficients. They can depend on the state
variables  (u,q,Q,w) but are independent  of
(D, Dy, Dy, D).

The equations governing the dissipative time evolution
(6) implied by (26) are the following:

dQ) 52

—— — —_AD®p ,
( dt diss é\q)Q ¢
dq»-) =)

1y - _ =— A
( dt ] giss 5D @i
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dw:. 5= |
Uy _ - _ (3)__ . 4) ) '
( dl )dlss - &I)Wij - q)wikAkj 2(leAkj + Aik ij)‘
(27)

We now proceed to specify more clearly the coefficients
introduced in the dissipation potential (26):

A= dl_Q[tr(q . q)]1/2
o
A(2 Q2 |:<__ 1>Q+[t1'( . )]1/2:|
28,7 q-q )
AP =\p7",
AW =g (28)

The first two have been chosen in such a way that we recover
with them (by ignoring w) the original Doi-Ohta theory; u
=d,/(d,+d,), d;>0 and d,>0 (denoted ¢, and c, in the
Doi-Ohta paper) are phenomenological parameters, and 7, is
the viscosity coefficient. The third and the fourth coefficients
A® are A® are new. We shall discuss their physical inter-
pretation in Sec. III B

With the choices (28) and (21), the dissipative time evo-
lution equations (27) become

d_Q _ d FQ 1/2 Bﬂ 3/2
<dt>diss_ —tr(g - q)] 0 [tr(g - q)]

[tr(q : q)]”ztr[wr- w - (q + %Qﬁ)},

1
2

dq __ﬂ l_ |
<dt>d1§§ 7]O|:(M 1>Q+[tr(q q)]1/2:|

2
(I‘q + gw w)

( dw ) 4
— =—akw—-ED-b. (29)
dt diss

Summing up, the governing equations of the extended
Doi-Ohta model are (4), (20), and (29). It is easy to verify
that, by omitting w, the governing equations of the original
Doi-Ohta model are indeed recovered except for two addi-
tional terms (one quadratic and one third order in ¢), appear-
ing in our formulation, in the expression for the extra stress
tensor. We emphasize at this point that all the terms in the
free energy, including in particular the term ®©h®) are es-
sential for casting the original Doi-Ohta equations into the
GENERIC form. In other words we have shown that the
Doi-Ohta theory is compatible with thermodynamics only if
the free energy is given by (21). Doi and Ohta did not intro-
duce the free energy explicitly in [1] since they derived their
equations in a different way than we did, and they did not
investigate the problem of the compatibility with thermody-
namics. As shown in [11] and also in this paper, the free
energy they use implicitly is (21) with w=0.
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A. Physics expressed in the governing equations

Having written the time evolution equations, we now dis-
cuss in more detail the physics expressed in them. This dis-
cussion will also throw light on the physical interpretation of
the state variables (18).

1 u

We begin with the field #. The motion of a continuum is
seen in all approaches to the physics of continuum as a one-
parameter family of transformations R3— R3. These trans-
formations form a Lie group. The kinematics of the con-
tinuum is expressed mathematically as a structure of this Lie
group. The Poisson bracket associated canonically with the
dual of the Lie algebra corresponding to this Lie group is
given (see [14,15]) by the first line in (8); u is an element of
the dual of the Lie algebra. We thus conclude that the kine-
matics that we have used for the field # implies that u has the
physical interpretation of the overall momentum field of the
fluid. This interpretation is then also consistent with inter-
preting the first term in the (22) as the overall kinetic energy.

We note here that in mechanics as well as in thermody-
namics the state variables are always accompanied by their
conjugates (in our case the conjugate of a state variable is a
derivative of the free energy with respect to the state vari-
ables). The conjugate of the field u is thus ®,=u/p=v,
where v the velocity field. It is the field v that is directly
measured in hydrodynamic experiments and it is therefore
the state variable preferred in classical hydrodynamics. We
use u, which has a less direct physical interpretation since it
is with u that the Hamiltonian structure of fluid mechanics is
clearly displayed. We recall that the same observation can be
made about many other pairs of state variables. For example,
the temperature is a directly measurable quantity in thermo-
dynamics but it is advantageous to use its conjugate (i.e., the
internal energy which is not directly measurable) as preferred
state variable if we want to display and use the mathematical
structure of thermodynamics.

2.w

We recall a few observations about the Stokes problem.

(i) The mathematical formulation of the Stokes problem
consists of the Navier-Stokes equation for the flow velocity
with the outer boundary condition being the given imposed
velocity and the inner boundary condition expressing the
bulk-interface interaction. The solution depends on time ex-
plicitly and implicitly: explicitly because the Navier-Stokes
equation is the time evolution equation and implicitly
through the time dependence involved in the inner boundary
condition. The explicit time dependence is usually neglected
by replacing the full Navier-Stokes equation with its station-
ary creeping flow approximation.

(ii) The advection of the interface is modified by replacing
Vv on the right-hand side of the second equation in (9) by
Vuv+e€, where € is the gradient of the velocity perturbation.

How shall we formulate the Stokes problem in the meso-
scopic setting used in this paper? We certainly cannot formu-
late the inner boundary condition since the knowledge of the
exact shape and precise location of the interface, needed in
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the formulation, is outside the scope of the mesoscopic de-
scription. We shall proceed as follows: We look for a modi-
fication of the advection in which Vv on the right-hand side
of the second equation in (9) is replaced by Vv + €, where the
time evolution of € is coupled to the time evolution of the
rest of the state variables in such a way that together the time
evolution is GENERIC. The latter requirement means that
the GENERIC nature of the original formulation of the
Stokes problem (and thus all the physics expressed in this
structure; see Sec. IT A) is preserved. The problem that we
are facing can also be formulated (in a more mathematical
language) as follows: We look for an extension (deforma-
tion) of (7) and (9) in which Vo on the right-hand side of the
second equation in (9) deforms into Vu+ € and the Poisson
bracket (8) deforms into a new Poisson bracket involving €.

The setting presented in Egs. (13) and (14) provides a
solution to this problem. It may not be, however, a unique
solution. We have been unable to prove the uniqueness but
we have also been unable to find another solution.

The way w appears in (19) shows that the transpose of the
conjugate of w has the physical interpretation of the gradient
of the velocity perturbation. We thus interpret the second
term in (22) as the contribution of the velocity perturbation
to the kinetic energy. We shall take the parameter « to be the
inverse of the average mass of the blend.

In contrast to the microhydrodynamic formulation of the
Stokes problem we keep in its mesoscopic formulation the
explicit time dependence of the perturbed velocity. This is
consistent with a general observation that, when passing
from microscopic to more macroscopic levels of description,
we deal with larger objects, and thus the effect of inertia
becomes more important. Moreover, if we want to preserve
the GENERIC structure with w, we have to keep the time
evolution of w.

Originally, we regard all three state variables (u,c,w) as
slow variables, their time evolution is assumed to be sepa-
rated from the time evolution of the fast time evolution of
irrelevant microscopic details. Let us now assume that the
relaxation time of w is very small (as we do later in the
comparison with results of experimental observations) and
thus w becomes a fast variable. What this means is that w
becomes in fact a function of the slow variables (in other
words, w becomes enslaved to the remaining slow variables).
It can be thus considered as a fast variable, separated from
the slow variables, and omitted. The separation brings about
then a change of the slow time evolution; namely, the affine
advection [i.e., the advection without (I)‘C in the first two
terms on the right-hand side of the first equation in (19)]
becomes the nonaffine advection [i.e., <IJ£ in the first two
terms on the right-hand side of the first equation in (19)
becomes a function of V®,; see more in [2]]. In this paper
we shall not make the separation even in the case when the
relaxation time of w is very small (see Sec. IV) because such
elimination leads to the time evolution equations that do no
longer possess the GENERIC structure.

3. @9

It has been established in [11] that the kinematics ex-
pressed in the Poisson bracket obtained by transforming [us-
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ing the transformation (16)] the Poisson bracket (8) is the
same as the kinematics derived (implicitly) in [1]. Moreover,
in order to interpret (23) as the surface tension contribution
to the free energy, Q has to have the interpretation of the area
of the interface per unit volume. We thus conclude that
(Q.,q) have the same physical interpretation as (Q,q) intro-
duced in [1].

Doi and Ohta relate (Q,q) to the second moment of the
one-particle distribution function f(r,n), where n is the unit
vector perpendicular to the tangent plane of the interface at
the point r. The tensor ¢ is the traceless part of the second
moment in n. In what sense does the tensor g characterize
the shape of the interface? The tensor ¢ is certainly related to
the anisotropy of the interface distribution and thus indirectly
also to its deformations. Indeed, g=0 implies that the distri-
bution is isotropic. It is also clear that ¢ is not directly related
to the curvature. Note that the distribution function f(r,n)
itself does not contain any direct information about the cur-
vature. For that being the case we would have to know how
n changes under the infinitesimal displacement of the point
to which it is attached. Indirectly, however, g does character-
ize anisotropy of the distribution of n and thus also (very
indirectly) the curvature.

4. Other state variables

The questions that have to be asked in any mesoscopic
theory are the following: Are the state variables well chosen?
Does the time evolution described in the theory represent the
most pertinent part of the time evolution, does it indeed rep-
resent the slow time evolution that is well separated from the
fast time evolution representing the impertinent details?
These questions can be answered by either deriving the me-
soscopic theory from a more microscopic theory or by com-
paring consequences of the mesoscopic theory with results of
experimental observations. Below, we shall make only a few
comments about possible additional state variables that can
be adopted to improve the theory. The derivation from a
more microscopic theory is out of the scope of this paper, the
comparison with other theories and with experiments is pre-
sented in Sec. IV.

As shown in [17] and in the references cited therein, the
free energy ®nter face) yepresenting the surface tension con-
tribution to the free energy should include also terms [that
are added to (23)] involving the curvature of the interface. In
order to be able to write down such terms we would have to
adopt new state variables with which the curvature can be
expressed. For the specific blends discussed in Sec. IV the
curvature-dependent contribution to the free energy is, as
follows from [17], very small and we therefore do not pursue
this route in this paper.

In the case when the interface is a membrane with its own
internal mechanical (elastic) properties then the free energy
has to include terms expressing the membrane elastic energy
(see, e.g., [18]). To be able to write down such terms, we
would have to again enlarge the set of state variables by
adopting new ones allowing to express the curvature and
elastic deformations (including stretching) of the interface.
We hope to follow this route in a future presentation but in
this paper we limit ourselves (see Sec. IV) to the interfaces
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with very small or totally absent elastic deformations and we
therefore do not need to make such extensions.

The morphological state variables (Q,q) describe the
morphology locally. We may expect that the global (shape)
features of the interface (for example, the size and the distri-
bution of droplets or the co-continuous form of the interface)
play an important role in determining the overall free energy
(in particular in determining its entropic part). Let the state
variables through which the global shape of the interface can
be expressed be denoted by the symbol x*h%) Let us as-
sume that we formulate an extended theory involving x(shape)
and thus we have equations governing the time evolution of
xhape) T et this time evolution be faster than the time evolu-
tion of the rest of state variables and thus x*"%) becomes
enslaved to them [i.e., xX*"%®) becomes a function of (Q,q)].
We suggest that the free energy (24) is the part of the free
energy representing the global shape contribution depending
after x*") on which it depends has been replaced by
xhape) @0 on (0,q). We thus interpret (24) as an approxi-
mation to the shape-dependent free energy. The coefficient
B, introduced in it is considered as a (dimensionless) phe-
nomenological material parameter [see more in Sec. IV B,
Eq. (52)].

We recall that we have seen in Sec. III [see the text fol-
lowing Eq. (29)] that the part of the free energy proportional
to B, is essential for casting the original Doi-Ohta equations
into the GENERIC form. Specifically, it is essential for ob-
taining the dissipative part of the time evolution. Only with
this term in the free energy the inequality (dP/ df)issip <O is
guaranteed. We note here that in order to guarantee J®/or
=(IP/ 9t) nondissip+ (9P / 9t) gissip <0 we need to guarantee that
(0D / 3t)pondissip=0- This is indeed guaranteed provided the
extra stress tensor is given by the last equation in (20). The
terms involving B, are, however, missing in the expression
for the stress tensor used in the original Doi-Ohta models
(this has been noted already in [11]). We shall see in Sec. IV
that the missing terms improve the rheological predictions of
the model.

B. Material parameters

Every theory, formulated on any level of description,
needs parameters (called material parameters) expressing the
individual features of the systems under consideration. For
instance, in classical mechanics, it is the mass and all the
parameters entering the characterization of the forces, in hy-
drodynamics of simple fluids, the material parameters are the
viscosity and the heat conductivity coefficients and all the
parameters entering the local fundamental thermodynamic
relation. The mapping: physical systems— material param-
eters can be obtained by following two routes: route 1, by
staying inside the level, or route 2, by investigating relations
to other levels. Below, we shall make a few brief comments
about both routes.

Route 1. Let the level on which we place ourselves be
denoted by the symbol L,. Among all experimental observa-
tions made on the level £, (we shall denote them by the
symbol Op) we select some (OF*"CO,) that will be re-
garded as measurements of the material parameters. The val-
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ues of the parameters are obtained by fitting the results of the
observations Of'" with predictions of the theory. The suc-
cess or the failure of the theory is then seen in the compari-
son of the results of the remaining O \Of" observations
with predictions of the theory. This route is traditionally fol-
lowed on all well-established levels as for example in clas-
sical thermodynamics, classical mechanics, and classical hy-
drodynamics.

Route 2. Let the level £; be more microscopic (i.e., in-
volving more details) than the level L. For instance, let £
be the level of classical hydrodynamics and £, the level of
Boltzmann kinetic theory. Both levels £, and £, are autono-
mous (i.e., neither of them needs the other to be formulated
and applied) but since the level £, is more microscopic we
can anticipate that an analysis of solutions of the governing
equations on the level £; can lead to a derivation of the
theory on the level L. The process of the derivation can be
seen as a pattern recognition process in the set of solutions
(trajectories) obtained on the level £,. For instance, in the
case of £, being the Boltzmann kinetic theory and L, the
hydrodynamics, such passage L£;— L, is provided by the
famous Chapman-Enskog method. Let the material param-
eters associated with the level £, (£;) be denoted P; (P;).
The passage £, — L, induces the passage P; — P,. The ma-
terial parameters P, can be thus obtained by independent
measurements made on the level £,. For example, by using
the Chapman-Enskog method, we obtain the viscosity and
the heat conductivity coefficients expressed in terms of the
material parameters used in the Boltzmann kinetic theory.

Now, let the level £, (we shall denote it hereafter £,
be the level with the state variables (18) and the governing
equations (20) and (27) and the more microscopic level £,
(denoted hereafter L icronya) the level of microhydrodynam-
ics on which the interface is specified as a surface in R3, ie.,
as an immersion R? D Q) — R?. The material parameters used
on the level L., are

(dl’lu” ﬂO’F’Bq’Avg)- (30)

The first four appear already in the original Doi-Ohta theory;
the last three are new. We emphasize that all these material
parameters have a clear physical interpretation from the way
they have appeared in the GENERIC construction of the
governing equations. Essentially, they quantify the physics
that we have introduced into our model. We also note that all
the parameters that entered the dissipation potential (i.e.,
di,m,m,\,€) do not have to be just numbers, they can be
functions of the state variables. We have to require only that
the properties of the dissipation potential (2) hold.

The material parameters serving on the level of microhy-
drodynamics are the hydrodynamic parameters characteriz-
ing the two fluids involved as well as the parameters charac-
terizing their interface and the bulk-interface interactions.

Some material parameters included in (30) will be deter-
mined in Sec. IV by following route 2, some by following
route 1. We recall briefly the way we proceeded in [16]. The
morphology of the interface in [16] is seen as a collection of
droplets mathematically described as ellipsoids. If we then
limit ourselves to small deformations we can solve (by using
the perturbation method) both the microhydrodynamic for-
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mulation and the mesoscopic formulation analytically. By
comparing the solutions we find the mapping Ppjicronya
— Preso- We shall follow a similar strategy in Sec. IV.

Before identifying the material parameters (30) for the
blends observed in experiments we explore solutions to the
governing equations for a large domain of the parameters.
Already this investigation allows us to identify regions in the
space of material parameters that have to be excluded. For
example, we find in the next section that if A < 10® than the
solutions are unphysical (they oscillate widely in time and do
not reach stationary values).

Finally, we comment about the choice of the coefficient
A, that we have made [following [1], in (28)]. The advantage
of this particular choice is that the relaxation of Q stops once
the isotropic distribution of the interface (corresponding to
q=0) is reached. This is indeed the behavior observed in
experiments. We recall (see, e.g., [19]) that in the physical
systems involving an interface endowed with surface tension
the extra stress (determined for example, in the case of
spherical droplets, by the well-known Young-Laplace for-
mula) remains to be present even at the complete equilib-
rium. In the next section, where we shall calculate rheologi-
cal consequences of the governing equations, we shall also
mention other choices for the coefficients AV, A®, A® and
compare their consequences.

IV. RESULTS

Now we proceed to solve Egs. (4), (20), and (29). From
the mathematical point of view, they represent a set of ordi-
nary differential equations that we solve numerically by us-
ing standard software packages. In the cases when the equa-
tions are “stiff,” we use the solver called ODE23S in MATLAB.
It is based on a modified Resenbrock formula of order 2.

We solve the equations with the imposed flow being a
simple shear flow. From the calculated extra stress tensor we
extract the standard rheological characteristics and present
them in figures. The initial condition in our calculations is
always

0=0,, w=0, (31)

where Q is considered to be a parameter.

The predictions of the active Doi-Ohta (DO) model [i.e.,
for Egs. (4), (20), and (29)] will be compared below with
predictions of some other models and some published ex-
perimental data. The other models that we shall consider are
four Doi-Ohta-type models [denoted as DO1, DO2, Lee-Park
(LP), and Wagner-Ottinger Edwards (WOE) models] and one
[the Frankel-Acrivos (FA) model] based on an approximate
(small deformation) microhydrodynamic analysis. The Doi-
Ohta-type models all share the same nondissipative time
evolution [governed by (20) with w missing] and differ in the
choice of the dissipative coefficients A; and A,. They are the
following.

DOI model. This is the original Doi-Ohta model [1] (i.e.,
the field w is absent) corresponding to A" and A® given in
(28) with tr(g-q) replaced by Q? (also used in [26,28]).

DO2 model. This is the original Doi-Ohta model [1] (i.e.,
the field w is absent) corresponding to A, and A, given in
(28) (also used in [27]).

q=0,

056302-8



FLOW PROPERTIES OF IMMISCIBLE BLENDS: DOI-...

LP model. This is the modification of the Doi-Ohta model
introduced by Lee and Park [20]. In their reinterpretation of
the physics involved in the dissipative time evolution, d; is
the rate coefficient of droplet coalescence, d, is the rate co-
efficient of the shape relaxation, and a new parameter, ds, is
the rate of droplet break up and deformations.

WOE model. This is the modification of the Doi-Ohta
model introduced in [21]. In this model the initial value of Q,
namely, Q,, plays the role of the length scale. The thermo-
dynamic force driving Q to equilibrium is proportional to
0-0,.

FA model. This is not a model formulated on a mesos-
copic level as the previous four are. The immiscible blend is
assumed to be a colloidal suspension of spherical droplets
that only slightly change their shape in the flow. With this
assumption, the microhydrodynamic formulation [22] of the
dynamics of the interface can be brought into closed form
expressions for quantities characterizing rheological behav-
ior [22,23]. In Ref. [23] the droplet radius is allowed to de-
pend on the shear rate.

A. Dimensionless equations

We recall that an immiscible blend is regarded on the
mesoscopic level that we have adopted in this paper as a
single fluid with an internal structure. In view of the experi-
mental data with which we shall later compare predictions of
the model, we shall hereafter restrict ourselves to the droplet
morphology. The single fluid will be the fluid outside the
droplets and the surface of the droplets will be the internal
structure. Instead of 7, denoting the viscosity of the single
fluid we shall now use 7,y

We shall regard 1/Q, as a characteristic length (Q, is the
initial surface area per unit volume of the interface),
Tou! (Qol) as the characteristic time, and I' is the surface
tension. We note that in the particular case of suspensions of
spherical droplets, Qg=3¢/r,, where ry is the initial radius
of the droplet and ¢ the volume fraction of the droplets. The
dimensionless state variables are introduced as follows:

Q* — g q* — i
Qo Qo
I Vv w
t*=tQL, Voi=— whr=—— gt=——
Tout Y Tout ToutY
(32)

The dimensionless time evolution equations become (in or-
der to simplify the notation we omit hereafter the superscript
#; all quantities are dimensionless)

dQ Z—Ctr(q-VUT)—KM

=4 _ L2
dr dl{(q~q) 0

M K 12 [ T ( 2 )]
-B, 0 +2Q(q.q) trfw'-w- q+3Q5 ,
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2
d—":(" +—5)<Ctr(q-VvT)+K

q tr(b-w‘b))
dt 0 3

0

—é[C(b-VvT+Vv-b)+Kb'(w+wT)-b]

—ch[(ll: - 1>Q+ (q:q)”z}(w T W),

48,
dw
E=C(W'VU—VU'W)+K(W'b'WT—b'WT'W)
b :
+§~[(1—3,8qu—‘21>5+4@§]+Kb~wT~w—,u1w
~CusD -b7",
int_ 1) b q:q q
0’”:61{5-|:<1—3qu>5+4ﬂq§:|+KW'b'WT},
(33)
where
b=0Qq+ %Q25. (34)

The dimensionless parameters appearing in (32) are de-
fined as follows:

. 2
— ToutY — aQO Tout — )\anout _ g
Q2 Tout

C N K N s -
0," T M 0,° M2
(35)

The dimensionless parameter C is a capillary number de-
scribing the relative strength of the applied viscous force
(which tends to enlarge and deform the interface) to that of
the interfacial tension (which tends to resist the deforma-
tions). The dimensionless parameter , representing the ratio
of the kinetic energy of the interface to the interfacial free
energy, is a known parameter since « is the inverse of mass
density of the interface. The parameters d; and u are the
same as those introduced in the original Doi-Ohta model.
The dimensionless parameters u; and u, characterize the
dissipation of w. They, as well as ,Bq, will be determined (see
Sec. IV B) by relating particular solutions of the present
model to those arising in the the microhydrodynamic formu-
lation.
The initial conditions are the following:

0=1, ¢q=0, w=0. (36)
B. Determination of the material parameters

The dimensionless parameters appearing in (32) are

(dh/J”Bquu“lwu“Z)' (37)

The first two were introduced in the original Doi-Ohta theory
(see [1]); By M1, and u, are new material parameters. In this
section, the new parameters will be determined, i.e., they
will be expressed in terms of the remaining material param-
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eters. The method we use is similar to the one used in [16].
We solve analytically the equations of the present model in a
particular situation and compare them with the analytical so-
lutions of the microhydrodynamic equations in the same situ-
ation. The particular situation that we consider corresponds
to the weak external flow. The equations, both those arising
in the mesoscopic model and those arising in the microhy-
drodynamic formulation, are solved by the perturbation
method with the capillary number C playing the role of the
small parameter:

0=1+c0" +0(C?, (38)
q=Cq"V+0(C?), (39)

and
w=Cw" +0(C). (40)

‘We assume moreover that w evolves in time much faster than
Q and q. To first order in the small parameter C, Egs. (33)
become

dQ(l)
=—d,(gV:qM)2, 41
P 1(g:q") (41)
dgV 2 1
q—=——<1—@>1)—{<——1)d1
dt 3 M M
2k
—(48,+3) |q", 42
+27M1( B+ )}q (42)
1| (4
w) = —K—Bﬂ 1>q“> - 3MZD], (43)
M L\3

and the interfacial excess stress tensor is written as
. 4
o= (gﬁq+ 1)q<1>+0(0). (44)

From Eq. (42) we obtain the relaxation time of ¢ (with di-
mension) as

7, = ot ! (45)
00 (U= 1)d, + (2627 (4B, +3)

At the steady state, with dg"V/dr=0, Eq. (44) leads to the
following zero-shear viscosity:

(1 = kpo/ py) (48, +3)
OL(1/u— ), + (26/27 1) (4B, +3)]°

[~ o3l = (46)

Now, we turn to the analytical solutions known from mi-
crohydrodynamic theories for the problem of emulsions.
First, we compare the stresses. Taylor’s small deformation
theory [24] leads to

Sp+2
2p+2°

[7"o= (47)
where p= 7,/ ou a0d 7, (7040 is the viscosity coefficient
of the fluid inside (outside) the droplet. By equating (46)
with (47) we arrive at the first equation relating the micro-
hydrodynamic material parameters and (37):
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(1= Ko/ ) (48, +3) _Sp+2
(/- Dd, + 22T (4B,+3)] 2p+2

(48)

Second, we compare the morphology. The problem is that
the microhydrodynamic and the Doi-Ohta characterizations
of the morphology are not directly comparable. Nevertheless,
we still can compare the relaxation times. Palierne’s micro-
hydrodynamic analysis [25] gives a relaxation time for the
droplet shape at low frequencies,

T= 7Iou1"0(1917 + 16)(217 + 3)
S 40(p+1)

) (49)

where r, is the initial radius of the droplet, ry=3¢/Q,, and
¢ is the volume fraction of the dispersed phase. By equating
(49) with (45) we obtain the second equation relating the
microhydrodynamic material parameters and (37):

1 1
Qo (1= 1)dy + 2K127,) (4B, +3)
(19p + 16)(2p + 3)

ST 1) (50)

Now we proceed to draw consequences of Egs. (48) and
(50). We note that they are two nonlinear algebraic equations
relating five unknowns (37). Among all possible solutions we
look for those satisfying the following properties: (i) w; >0
(in order to satisfy the requirements put on the dissipation
potential), and (ii) 1/, and u,/ p; tend to zero as p— 1 (the
advection is expected to be passive if 7, ~ Fou)-

From the requirement (ii) we get

16
dy=——=H— (51)
105(1 - u) ¢
3 3
=——-—. 52
With these values of d; and B, we then obtain
Tx(19p +16)(2p + 3)
My = ) (53)
3[175(p+ 1) =2(19p + 16)(2p + 3)]
7[(19p +16)(2p + 3) — 25(5p +2)]
M= (54)

C3[175(p+ 1) = 2(19p + 16)(2p + 3)]

We note that the requirement (i) is satisfied if p<<1. But this
restriction is not a loss of generality since the Doi-Ohta char-
acterization of the morphology does not distinguish between
“inside” and “outside.” In the comparison with experimental
data we shall thus consider p to be always a ratio of the
smaller viscosity coefficient to the larger viscosity coeffi-
cient. The difference between the experimental data of the
blend with p and 1/p (see Sec. IV D) will be expressed in
other parameters (in particular, in the parameter yu—arising
already in the original Doi-Ohta theory—that is, at this point,
left undetermined).
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FIG. 1. Influence of u on the time evolution of the area density
Q/Q, (a) and on the deformation [tr(g-¢)]"?/Q (b) of the interface
of blends submitted to a start-up simple shear flow. (O) and (<)
correspond to the DO1 and DO2 models, respectively; the curves
(—), (--), and (-.-) correspond to the active DO model with u
=0.2, 0.5, and 0.8, respectively.

C. Effect of

In the original Doi-Ohta equations, the parameter u de-
scribes the ratio of the relaxation rate of the area density (the
size of the interface) to that of the deformation of the inter-
face (the deformation of its shape). The range of w is from 0
to 1. Although the physical meaning of the parameter u re-
mains the same in the present active advection model, its
influence on the morphological and the rheological is differ-
ent.

Figures 1 and 2 illustrate the influences of w on the tran-
sient behavior of the immiscible blend. The applied flow
field is a start-up simple shear flow, Q/Q, is the normalized
area density, tr(g-q)"?/Q describes the normalized average
deformation of the interface, and o'/5 and N are the inter-
face contributions to the normalized (i.e., divided by 7,,7)
shear stress and the first normal stress difference. The calcu-
lations are made by choosing 7,,=93 Pas, p=0.5, ¢
=30%, Qp=5 X 10* m™, v=0.5 s~! and u takes three differ-
ent values: 0.2, 0.5, and 0.8. The results of the DO1 (symbol
O) and DO2 models (symbol <) are also displayed, with d|
and u taking the same values as the active DO model with
u=0.5 (dashed line). Figure 1 shows that when u takes small
values, for example, ©<<0.2 with the above initial condi-
tions, the area density increases monotonically with time.
This corresponds to the processes of deformation or breakup
of droplets. Upon increasing u (u>>0.5 here), the interfacial
area densities show monotonic decreases with time. This in-
dicates that the coalescence of droplets takes place. The
larger w, the stronger is the effect of the coalescence. As a
consequence of the decrease of the area density with larger
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FIG. 2. Influences of u on the time evolution of the normalized
interfacial shear stress ¢y and the first normal stress difference N™™
of blends submitted to a start-up simple shear flow. (O) and (<)
correspond to the DO1 and DO2 models, respectively; the curves
(—), (-), and (-.-) correspond to the active DO model with wu
=0.2, 0.5, and 0.8, respectively.

M, the average deformation of the interface increases because
larger droplets with the same interfacial tension are easier to
deform under the same external flow. The figure also dis-
plays a larger overshoot of the deformation for larger drop-
lets with smaller area density. The present model is the DO2
model modified with active advection. The comparison of
the dashed lines (active DO model with ©=0.5) and ¢ sym-
bols (DO2 model with the same d; and w) indicates that the
DO2 model overestimates the area density and underesti-
mates the global deformation of interfaces.

As to the rheological properties depicted in Fig. 2, it can
be seen that both the shear stress and the first normal stress
difference decrease as w increases. This is in accordance
with the decreased area density displayed in Fig. 1. Since
smaller Q and ¢ result in smaller stresses. Figure 2 also
displays that the overshoots become more prominent as u is
enhanced because the size of the droplet is increased with
lower area density. We can also see from these graphs that
the DO2 model underestimates both the shear stress and the
first stress differences. This is because the expression for the
stress tensor used in the original Doi-Ohta model is incom-
plete. The contribution due to the deformation of the inter-
face, i.e., the terms involving B, in the last equation of (33),
is missing in the original Doi-Ohta model.

The influence of w on predicted steady-state values of
morphological and rheological functions is displayed on
Figs. 3 and 4. 7™ and N are the interface contributions to
the viscosity and the first normal stress difference. The cal-
culations are made by choosing 7,=93 Pas, p=0.5, ¢
=30%, '=1Xx107 Nm, Qy=1Xx10*m™!, and u takes three
different values: 0.2, 0.5, and 0.8. When the shear rate varies,
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FIG. 3. Influence of u on steady-state values of the normalized
area density (a) and the deformation (b) of the interface of blends
submitted to a simple shear flow. (O) and (<) correspond to the
DOI1 and DO2 models, respectively; the curves (—), (--), and (-.-)
correspond to the active DO model with ©=0.2, 0.5, and 0.8,
respectively.
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FIG. 4. Influence of u on steady-state values of the normalized
interfacial shear stress oy and the first normal stress difference N'™
presented as functions of the shear rate. (O) and (<) correspond to
the DO1 and DO2 models, respectively; the curves (—), (--), and
(-.-) correspond to the active DO model with ©=0.2, 0.5, and 0.8,

respectively.
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FIG. 5. Influences of p on steady-state values of the normalized
area density (a) and the deformation (b) of the interface of blends
presented as functions of C. (O) and (<) correspond to the DO1
and DO2 models, respectively; the curves (—), (--), and (-.-) corre-
spond to the active DO model with p=0.1, 0.5, and 1-1X 1073,
respectively.

we observe in Fig. 3 that an increase in u leads to a decrease
in the area density and an increase in the deformation of the
interface, just as the figure of the transient states shows.
Moreover, we note that the influence of u is more pro-
nounced at smaller shear rates, and become less pronounced
as the shear rate increases. Figure 3 also indicates that both
the DO1 model and the DO2 model predict a linear relation
between Q/Q, and y. These relations become nonlinear in
the active DO model. Another difference between the DO1
and DO2 models on one side and the active DO model model
on the other side is in the dependence of the steady-state
value of the interface deformation on the shear rate. Both
DOI1 and DO2 models predict no dependence but the active
DO model predicts an increase with an increase of the shear
rate.

The rheological properties at steady states are displayed in
Fig. 4. We see that an increase of u causes both the shear
stress and first normal stress difference to decrease. This ef-
fect becomes less pronounced in the region of higher shear
rates. The active DO model predicts a shear thinning behav-
ior, while the viscosities predicted by the two Doi-Ohta mod-
els are constant over the different shear rates. From the ex-
pression of the stress tensor, we conclude that the shear
thinning is mainly caused by (i) the decrease of the deforma-
tion part of the stress tensor (i.e., the terms involving ,Bq),
and (ii) the active advection. The figure shows also that N,
predicted by the active DO model becomes nonlinear as a
function of shear rate. Moreover, we note that  and N, are
insensitive to changes of w at high shear rates.
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FIG. 6. Influence of p on steady-state values of the normalized
interfacial shear stress s and the first normal stress difference N'™
presented as functions of C. (O) and (<) correspond to the DO1
and DO2 models, respectively; the curves (—), (--), and (-.-) corre-
spond to the active DO model with p=0.1, 0.5, and 1-1X 1073,

respectively.

D. Effect of p and C

The viscosity ratio p is defined as the ratio of the viscosity
of the dispersed phase to that of the the matrix phase. It
describes the nonuniformity of the material properties of the
immiscible blends, and plays the most important role in con-
trolling the extent of perturbation on the applied flow field.
The original Doi-Ohta model considers only p=1, corre-
sponding to passive advection, which is a special case of the
active advection. The capillary number C is another param-
eter that affects the properties of emulsions. In the following
paragraph, we will discuss the effect of p and C on rheologi-
cal and morphological predictions of active DO model.

Figures 5 and 6 illustrate the influence of p and C on
steady-state morphological and rheological behavior. /5 and
N‘lm are the interface contributions to the normalized (i.e.,
divided by 7,,,7) shear stress and the first normal stress dif-
ference. The calculations are made with ¢=30%, k=9.514
X107, u=0.1, and p takes three different values: 0.1, 0.5,
and 1—1X 1073, It can be seen from Fig. 5 that, if p takes a
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FIG. 7. Steady-state interfacial viscosity (a) and the first normal
stress difference (b) for the DOI1 model (:--); for the DO2 model
(-.-); for the WOE model (- - -); for the active DO model (—); by
(®) we represent the Vinckier et al. [29] experimental data.

value very close to unity, the interface is convected in the
active DO model just as in the DO2 model at small capillary
numbers. This implies that passive advection takes place for
p=1. When p deviates from unity, the predicted area density
is less than that of the DO2 model, which indicates a non-
affine advection. However, the global deformation
tr(q-q)"?/Q is increased because the decrease of Q is larger
than the decrease of tr(g-¢)"?. This means that during the
nonaffine advection the break up of the droplets in deforma-
tions is less frequent than during the affine advection.

We turn now to the interfacial shear stress represented in
Fig. 6. We can see that the shear stress is largest for the
passive advection with p=1. We also note that in the zero-
shear-rate limit it reaches the value 1.75 which is in agree-
ment with Taylor’s theory. The first normal stress difference
shows, for passive advection, an increase when C increases,
but a decrease when C increases for nonaffine advection.

E. Comparison with experimental data
and with other models

In this section we compare the results predicted by the
active DO model with experimental data. In order to facili-

TABLE I. Parameters used to predict the rheological properties of the immiscible blend of PIB-PDMS

(70%-30%) in the experiments of Vinckier er al.[29].

Model p Tout (P s) ¢ I'(mN/m) Qo (m™) dy K

DO1 93 0.3 2.8 14X 10* 0.53 0.51
DO2 93 0.3 2.8 14X 10* 0.53 0.51
WOE 93 0.3 2.8 14X 10* 0.53 0.51
Active DO 1.075 93 0.3 2.8 14X 10* 0.51
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FIG. 8. Steady-state interfacial viscosity of (a) 30-70 and (b)
70-30 blends of PIB-PDMS. The curve (--) corresponds to the LP
model; (-.-) to the FA model, (--) to the extended FA model and (—)
to the active DO model; (@) represents the experimental data taken
from Grizzuti et al. [23].

tate the illustration, we also present predictions of other
models, including the DO1, DO2, WOE, LP, and FA models.
The experimental data are taken from Vinckier er al. [29],
Grizzuti et al. [23], and Lacroix et al. [12]. All the material
data and initial conditions (if reported) are the same as those
in the experiments. The phenomenological parameter, wu is
determined by fitting the data.

First, we consider the steady-state rheological properties
of semidilute emulsions. The experimental data are taken
from Vinckier et al. [29] for the model system of poly-
(isobutene) (PIB) and poly(dimethylsiloxane) (PDMS) with
70% PIB as matrix. Both components show nearly constant
viscosity and a slight elasticity for the shear rates in the
interval from 0.3 to 6 s™!. The interfacial tension is 2.8
X 1073 N/m. Figure 7 shows the comparison of the contri-
butions of the interface to the viscosity coefficient 7™ and
the first normal stress difference N". The experimental val-
ues are obtained by subtracting the bulk contribution by us-
ing the following linear mixing rule:

nlot: 7]int+ 7](:om’

Nt]OtZNilnt+N(l:0m, (55)

where 7°°™ and N{°" are the volume-averaged values for
both components. In addition to the two original Doi-Ohta
models, DO1 and DO2, the predictions of the WOE model
are also presented. Since the initial area density O, was not
provided in the experimental data, we take it as another fit-
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TABLE II. Parameters used to predict the rheological properties
of the PIB-PDMS (30-70) blend in the experiments of Grizzuti et
al.[23].

Tout r QO
Model p (Pas) ¢ (mN/m) (m™') v d, )%
LP 310 0.3 3 3x10° 09 1.08 0.68

Active DO 1.61 310 0.3 3 3x10° 0.68

ting parameters here. The values of parameters used in the
models are listed in Table I.

We first compare the two original Doi-Ohta models. We
can see that with the same values of the material parameters
the DO2 model gives higher values for the viscosity coeffi-
cient and for the first normal stress difference. But both DO1
and DO2 models predict constant viscosity coefficients and
thus fail to predict the experimentally observed shear thin-
ning phenomena. The WOE model predicts qualitatively the
right trend of the shear thinning, but the predictions are not
quantitatively good enough. The predictions of the WOE
model for the first normal stress difference also look worse
than those of the original Doi-Ohta models. We note that the
active DO model not only predicts the shear thinning behav-
ior but it also gives the best quantitative fitting to the experi-
mental data. The improvement in predictions of the active
DO model is mainly a consequence of the more realistic
consideration of the advection of the interface, and the more
complete expression for the stress tensor.

Figure 8 displays other predictions of the active DO
model and compares them with the experimental data, the LP
model, and the FA model (the extended version of the FA
model due to Grizzuti et al. [23]. The steady-state viscosity
of the emulsion in the extended FA model is written as [23]

S5p+2 S5p+2
= 770ut|: N ¢+91(1+ p*2,
1+ 6, 2p+2 2p+2
19p + 16
——qﬂ, (56)
2(p+ 1)(2p +3)

where

- ((2p+3)(19p+ 16) "meu—oz))z' )

40(p+1) r

Here K and 6, are the parameters determined by linear vis-
coelastic measurements. Since the extended FA model gives
good predictions for semiconcentrated emulsions, we are in-
cluding it in the collection of models with which we are
comparing the active DO model. The experimental data are
taken from Grizzuti et al. [23] for an immiscible model poly-
mer blend of PIB-PDMS system subjected to a simple shear
flow. Figure 8(a) addresses the 30-70 system in 9 °C with
the volume ratio of 30% of PIB as the droplet phase. Figure
8(b) is for the 70-30 system at 9 °C with the volume ratio of
70% of PIB as the matrix phase. The interfacial tension was
reported to be 3X 107°N/m. The linear mixing rule, Eq.
(55), is used to calculate the total stress of the blends. The
viscosities of both of its components are taken to be their
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TABLE III. Parameters used to predict the rheological proper-
ties of the PIB-PDMS (70-30) blend in the experiments of Grizzuti
et al. [23].

PHYSICAL REVIEW E 78, 056302 (2008)

TABLE IV. Parameters used to predict the rheological properties
of the PP-(EVA-EMA) blend in the experiments of Lacroix et
al.[12] for =0.0126 s71.

Tout r QO M r
Model p (Pas) ¢ (mN/m) (m™) » d )% Model p (Pas) ¢ (mN/m) ry(um) d; u
LP 500 0.3 3 3x10* 0.9 0.56 0.525 DO1 11650 0.285 1.2 3.75 0.6 0.65
Active DO 0.62 500 0.3 3 3x10* 0.525 DO2 11650 0.285 1.2 3.75 1 0.65
WOE 11650 0.285 1.2 3.75 4.5 0.62
. Active DO 0.126 11650 0.285 1.2 3.75 0.95
zero-shear values, that is, 7p=500Pas and 7ppyps

=310 Pas. The values of the parameters used by the LP
model and the active DO model are listed in Tables II and III.
Since the initial radius Q is not known in the experiments,
we use both Q, and u as fitting parameters. The critical
steady-state droplet radii used in the FA model are taken as
6 pum for the 30-70 system and 3 wm for the 70-30 system,
corresponding to the measured values at shear rate y=3 s~!.
The parameters K and 6, are those used by Grizzuti et al.
[23]. As shown in Figs. 8(a) and 8(b), the LP model, just like
the original DO models, fails to predict the shear thinning
behavior. Introduction of more parameters does not change
the steady-state viscosity dependence on the shear rate. The
FA model (without adjustable parameters) can only qualita-
tively predict the shear thinning behavior. The extended FA
model, with an added relation (based on results of measure-
ments) between the droplet radius and the shear rates, can
give very good results over the larger-shear-rate region.
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FIG. 9. Time evolution of the total viscosity under start-up
simple shear flows with ¥=0.0126 (a) and (b) 0.0317 s~'. The
curves (--+) correspond to the DO1 model, (---) to the DO2 model,
(--) to the WOE model, (—) to the active DO model, and (@)
represent experimental data taken from Lacroix et al. [12].

However, both FA models underestimate the viscosity at low
shear rates. The predictions of the active DO model are in
good agreement with experimental data. It gives results that
are better than the results for the extended FA model except
at the region of large shear rates. The deviations of both
models from the experimental data at high shear rates may
be partially caused by the shear thinning of PDMS itself
(experimental data of Grizzuti et al. [23] shows that the vis-
cosity of pure PDMS has already dropped near y=5 s7').
In Fig. 9 we investigate the active DO model in
start-up simple shear flows. The models with which we make
the comparison are selected to be the DO1, DO2, and WOE
models. The experimental data are taken from Lacroix et al.
[12] for immiscible polymer blends of polypropylene/
ethuylenevinylacetate-etylenemethylacrylate [PP-(EVA-
EMA)] with the volume fraction 28.5% of EVA-EMA as the
droplet phase. Although the components are non-Newtonian
fluids, the dependence of the steady-state viscosities of the
pure components on the shear rate is not important since we
consider only the transient properties of the blends at a fixed
shear rate. Results of the experimental observations indicate
that the two components do not exhibit any measurable over-
shoot at start-up flows. Consequently, the overshoots ob-
served in the graphs are totally due to the presence of the
interface. Again, the linear mixing rule, Eq. (55), is used. The
data that we select in Figs. 9(a) and 9(b) correspond to ¥
=0.0126 and 0.0317 s~!, respectively. The initial value of the
surface area density is calculated as Qy=3¢/r,, with ¢ rep-
resenting the volume fraction of the droplet phase and r
being the measured initial volume-averaged droplet radius.
The parameters used in the calculations are listed in Tables
IV and V. We can see that the two original DO models can
predict well the steady state but underestimate the overshoots
observed in the experiments, while the active DO model can
provide good predictions of both the steady-state values and

TABLE V. Parameters used to predict the rheological properties
of the PP-(EVA-EMA) blend in the experiments of Lacroix et
al.[12] for =0.0317 s~

Model p 7y Pas) ¢ T (mN/m) ro(um) d; u

DO1 11080 0.285 1.2 3.75 0.3 0.65
DO2 11080  0.285 1.2 3.75 0.7 0.65
WOE 11080 0.285 1.2 3.75 2.2 0.65
Active DO 0.131 11080 0.285 1.2 3.75 0.92
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the height of the overshoot. However, the time taken for the
blends to reach the maximum of the overshoot predicted by
the active DO model is less than in the experimental obser-
vations. The WOE model, as shown in Fig. 9, fails to predict
the overshoot. A possible explanation for this is that the
modification introduced in the WOE model limits its appli-
cability to, essentially, the absence of breakup and coales-
cence (which likely play an important role in the initial de-
formations in start-up flows). It is worthwhile to note that in
the active DO model a larger u is fitted for the data of y
=0.0126 s~! than for those of ¥=0.0317 s~!. This is in agree-
ment with the experimental observations on the relationship
between the average steady droplet size and shear rate, where
the droplet size is proportional to the inverse of shear rate.
Since a larger 4 means a stronger tendency for droplets to
coalescence, the smaller the shear rates the easier it is for
droplets to collide and coalesce to form larger droplets.

To sum up, it is evident that the active DO model, al-
though using one tewer free parameter, can give the best
predictions among all the Doi-Ohta-type models.

V. CONCLUDING REMARKS

The most frequently used point of departure for discuss-
ing immiscible blends is microhydrodynamics [30]. The
physics entering the governing equations consists of the
rheological properties of the two fluids, mechanical proper-
ties of the interface, and the interface-bulk fluid interactions.
All the material parameters involved can be, at least in prin-
ciple, obtained in independent microhydrodynamic measure-
ments. The governing equations are easily written but they
are difficult to solve. Moreover, their solutions provide only
the  morphology. The transformation  morphology
— rheology requires additional physical input and approxi-
mations.

In this paper we take a different (a mesoscopic) path. We
regard the immiscible blend as a single fluid involving an
internal structure. How do we characterize the internal struc-
ture? We follow Doi and Ohta [1] and us the surface area per
unit volume (Q) and the anisotropy tensor (g). The new
physics (relative to [1]) that we are bringing is the perturba-
tion of the overall flow due to the presence of the interface
and the “rheological inhomogeneity” of the two fluids. In
order to be able to express the new physics we adopt an
additional state variable (a tensor w that is a conjugate of the
perturbed velocity gradient). We are taking the mesoscopic
viewpoint for two reasons. First, we want to search for new
physics emerging in the overall (mesoscopic) hydrodynamics
of immiscible blends. Such a search is, on the microhydro-
dynamic path, entangled hopelessly with the enormous diffi-
culty of solving the microhydrodynamic governing equa-
tions. Second, we want to satisfy the practical need of
providing a relatively simple formulation that can be used in,
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say, calculations involved in polymer processing operations.

The disadvantage of the mesoscopic approach taken in
this paper is that the material parameters quantifying the
physics involved (mesoscopic material parameters) can be
only partially determined by the comparison with microhy-
drodynamic theories. The remaining parameters (arising al-
ready in the original Doi-Ohta theory) have to be obtained
from measurements belonging to the same mesoscopic level
(as, for instance, the material parameters of classical hydro-
dynamics are usually obtained from hydrodynamic measure-
ments and not from microscopic measurements of atoms
composing the fluid under consideration).

The advantage of the Doi-Ohta approach is the simplicity
and transparency of the governing equations. We construct
them by filling the general framework called GENERIC. The
framework itself guarantees the agreement of solutions with
experimental observations constituting the basis of mechan-
ics and thermodynamics. The framework is filled by insight
into the physics taking place in the flowing immiscible
blend. We call the process of filling the GENERIC frame-
work a “GENERIC constitutive relation.” We use this termi-
nology in order to make a direct analogy with the familiar
term “constitutive relations” used for the process of filling
another abstract framework, namely, the framework of local
conservation laws (balance equations, the time derivative of
a field equals the divergence of a flux), constituting the basis
of classical hydrodynamics. If the fluids under consideration
have an internal structure whose time evolution takes place
on a time scale comparable with the time scale on which the
hydrodynamic fields evolve the the abstract framework of
local conservations laws is insufficient and has to be replaced
by the framework of GENERIC.

The final output of the model that can be compared with
experimental data is the following: (i) information about the
morphology of the interface (namely, the information ex-
pressed in the orientation tensor ¢ and the density of the
surface area of the interface Q), and (ii) the rheological be-
havior. In this paper we concentrate on predictions of non-
linear rheological responses to imposed shear flows and their
comparison with predictions of the original Doi-Ohta model
and experimental data reported in the literature. In the origi-
nal Doi-Ohta model we distinguish four versions, the Doi-
Ohta 1, Doi-Ohta 2, Lee-Park, and Wagner-Ottinger-
Edwards models, corresponding to four variations in the
selection of phenomenological quantities entering the model.
In general, we find that the more faithful to reality (i.e.,
closer to microhydrodynamics) consideration of the physics
in the active Doi-Ohta model improves the agreement of
predictions with the observed behavior.
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